ENERGIA EOLICA
Modernos molinos de viento | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Los molinos más modernos se han ido construyendo de metal liviano (algunos son de chapa de acero galvanizada), o con las aspas formadas con listones de madera que pueden abrirse con los bordes al viento. Las grandes aspas se han ido reemplazando por un número mayor de paletas dispuestas en forma de rueda, y el árbol, en que están montadas posee una cola de orientación, siendo ubicadas de modo que puedan girar a una velocidad 2,5 veces superior a la del viento.
Los modernos molinos de viento se mueven por dos procedimientos: el arrastre, en el que el viento empuja las aspas, y la elevación, en el que las aspas se mueven de un modo parecido a las alas de un avión a través de una corriente de aire. Las molinos que funcionan por elevación giran a más velocidad y son, por su diseño, más eficaces.
Los elementos básicos componentes del molino son el rotor, los mecanismos de control y orientación y la estructura de soporte.
Características de los molinos de viento
El rotor es el aparato exterior del molino de viento, cuya función es transformar la energía eólica, en un movimiento rotatorio, compuesto de elementos denominados aspas, palas o hélices.
Las palas se construyen generalmente para los molinos convencionales en chapa metálica, pero en modelos de tamaño elevado se utilizan preferentemente resinas plásticas y fibras sintéticas, de bajo peso, de formas aerodinámicas, gran resistencia mecánica y a los agentes climáticos.
El rotor es la pieza fundamental en la captación de la energía eólica siendo uno de los problemas fundamentales de su diseño, la prevención de la acción de los fuertes vientos. Por ello se han desarrollado diversos modelos que permiten proteger los rotores, como por ejemplo variación de la inclinación de las aspas, giro del rotor de modo de disminuir la intensidad máxima del viento, y especialmente la utilización de frenos generalmente de disco, que accionan automáticamente cuando la velocidad del rotor es muy elevada.
De esa manera se tiende a evitar y prevenir esfuerzos excesivos, altas vibraciones e incluso la rotura, como resultado de los vientos muy intensos. Además las palas deben ser adecuadamente calibradas a fin de evitar ruidos y vibraciones que pueden afectar la estructura de soporte.
Según la posición del eje, los rotores pueden clasificarse en rotores de eje horizontal, donde el eje principal están paralelo al suelo y en rotores de eje vertical, con el eje perpendicular al suelo.
Rotores de eje horizontal: Los rotores de eje horizontal se clasifican según su emplazamiento en:
1.- Rotor a sotavento: Los rotores a sotavento son aquellos en que el viento actúa desde atrás. Estos rotores tienen la ventaja de la auto orientación, debido al efecto que provoca el cono que describen las palas al rotar.
Así se utilizan aeroturbinas con sistemas aerodinámicos muy estudiados y precisos, con pequeño número de palas, en la que se pueden lograr altas velocidades de giro.
2.- Rotor a barlovento: Los rotores a barlovento son los que reciben el viento de frente y necesitan un sistema independiente de orientación. Si el molino es de reducidas dimensiones basta una cola que actúa como veleta la que se desplaza impulsada por la dirección del viento. Dicha veleta es una pieza de metal de forma aerodinámica, que se coloca junto al rotor, de modo de orientarlo contra el viento incidente, mediante el giro sobre un eje vertical.
En los molinos de mayores dimensiones, se utilizan hélices auxiliares perpendiculares a la principal, que mueve el conjunto cuando varía la dirección del viento.
En grandes molinos se acoplan servomecanismos controlados por microprocesadores que orientan el rotor en función de los datos registrados por una pequeña veleta sensora.
Rotores de eje vertical
Como se mencionó anteriormente los molinos de viento se utilizan en la actualidad para el bombeo de agua, especialmente en zonas rurales, y para la generación de electricidad.
Una bombeadora de agua es un molino con un elevado momento de torsión y de baja velocidad, se usan con mayor frecuencia en las regiones rurales. Las bombeadoras de agua se emplean sobre todo para drenar agua del subsuelo. Estas máquinas se valen de una pieza rotatoria, cuyo diámetro suele oscilar entre 2 y 5 m, con varias aspas oblicuas que parten de un eje horizontal. La pieza rotatoria se instala sobre una torre lo bastante alta como para alcanzar el viento. Una larga veleta en forma de timón dirige la rueda hacia el viento. La rueda hace girar los engranajes que activan una bomba de pistón. Cuando los vientos soplan en exceso, unos mecanismos de seguridad detienen de forma automática la pieza rotatoria para evitar daños en el mecanismo.
Para el bombeo de agua mediante la energía eólica, pueden emplearse dos formas básicas:
Bombeo mecánico del agua
Como elemento referencial se consigna en el cuadro siguiente la capacidad de un molino de viento para elevación del agua a distintas alturas, considerando un viento tipo de 26 km por hora.
Bombeo eléctrico del agua
Para el bombeo del agua se emplea una bomba eléctrica, cuyo motor se conecta a los terminales del generador eólico o a los polos de la batería acumuladora en caso de utilizarse.
La unidad de control debe asegurar una óptima utilización de la potencia del viento sea cual fuere su velocidad, a fin de evitar sobrecargas. Así, la unidad de control comanda por medio de impulsos el sistema de maniobra, por ejemplo mediante un sistema hidráulico, que regula la orientación del rotor, cuando se alcanza la potencia máxima del generador.
Las máquinas modernas comienzan a funcionar cuando el viento alcanza una velocidad de unos 19 km/h, logran su máximo rendimiento con vientos entre 40 y 48 km/h y dejan de funcionar cuando los vientos alcanzan los 100 km/h. Los lugares ideales para la instalación de los generadores de turbinas son aquellos en los que el promedio anual de la velocidad del viento es de cuando menos 21 km/h.
Potencia eléctrica
La potencia de un aerogenerador depende de:
§ Velocidad de giro y longitud de las palas del rotor
§ Dimensión de las bobinas del generador
El número de palas del rotor no influye en la potencia suministrada.
Debido al costo de las bobinas para aumentar la potencia eléctrica obtenida conviene incrementar la velocidad del giro para lo cual se emplea una caja de velocidades, cuya función es la de multiplicar la velocidad de rotación del rotor para llevarla a valores adecuados al funcionamiento del generador.
Para lograr la potencia mecánica necesaria es conveniente aumentar la longitud de las palas, pero ello debe limitarse, dado que recurrir a rotores de grandes dimensiones implica originar problemas de sustentación y aumentos de costos de fabricación.
|
Comentarios
Publicar un comentario